Предыдущая Оглавление Следующая

NeDvg017.jpg

ТРДДФ YF-120

На этапе предварительного проектирования двигателя Strutjet предполагалось, что усредненный по всему полету его удельный импульс составит 585 с, а тяговооруженность 22 единицы. За счет применения такой силовой установки в составе одноступенчатой МТКС относительную массу топлива системы можно будет снизить до 84%, (для аналогичных транспортных систем с ЖРД этот параметр составляет 90%).

Выполненные летом 1999 г. стендовые испытания уменьшенной (в 6 раз) модели двигателя Strutjet подтвердили реальность достижения указанных характеристик.

В рамках программы Revolutionary Turbine Accelerator (RTA - «Качественное улучшение характеристик газотурбинных двигателей») Центр Гленна ведет подготовку элементной базы для создания комбинированного турбопрямоточного двигателя (turbofan-ramjet), способного работать сначала в режиме двухконтурного турбореактивного двигателя с форсажем (до скорости М=2,5), а затем как прямоточный ВРД. Максимально достижимая скорость для аппаратов с таким установками определяется М=4,2.

С начала 1960-х годов, когда был создан турбореактивный двигатель J58 для самолета SR-71, развивавшего скорость М=3,3, подобные проекты в США не предпринимались. Поэтому названная силовая установка разработанная фирмой Pratt and Whitney, стала своеобразным эталоном для нового изделия.

Среди основных требований, предъявляемых к комбинированному двигателю RTA, известны следующие (в скобках указаны параметры ТРД J58):
-  тяга 25 т (15,6 т),
-  тяговооруженность 10-15 (4; для современных военных ТРДД она составляет 8 единиц),
-  диаметр 1,5 м (1,4 м),
-  продолжительность работы 30 мин (1,5 ч),
-  ресурс термонагруженных элементов 750 ч (100 ч),
-  горючее JP-8 с добавками (JP-7). Поскольку разработка летного образца силовой установки еще не обеспечена финансами, то программа RTA ориентирована на создание масштабных моделей будущего двигателя.

Летом 2002 г. NASA заключило с фирмой General Electric пятилетний контракт стоимостью 55 млн. долл. на изготовление экспериментальной модели двигателя диаметром 1 м. Эта модель, предназначенная для общей оценки работоспособности изделия в наземных условиях, проектируется на элементной базе ТРДД YF-120. В соответствии с достигнутыми договоренностями, стендовые запуски комбинированной установки RTA должны состояться в 2006-2007 гг.

Для летной отработки планируется подготовить двигатели диаметром 0,4 м. Среди кандидатов на подряд называются фирмы Rolls-Royce USA и Williams International (окончательный выбор NASA планировало сделать в 2003 г.).

К натурным испытания малых моделей двигателя намечается приступить в 2009-10 гг. Возможно, этими силовыми установками будут оснащаться экспериментальные аппараты Х-43В. Для обеспечения полетов данного изделия потребуется четыре двигателя.

Полномасштабный турбопрямоточный двигатель может быть создан и испытан после 2018 г.

ИМПУЛЬСНЫЕ ДЕТОНАЦИОННЫЕ ДВИГАТЕЛИ

Тяга в импульсных двигателях дискретно производится за счет ударной волны, производимой микровзрывом в камере сгорания. Различаются детонационные двигатели двух типов: воздушно-реактивные с потреблением атмосферного кислорода PDE (Pulse Detonation Engine) и ракетные PDRE (Pulse Detonation Rocket Engine).

Силовые установки первого типа, работающие на углеводородном горючем, способны эффективно функционировать начиная от момента взлета до скоростей М=3-4, что делает их особенно привлекательными для использования в составе боевых крылатых ракет. Двигатели PDRE предназначаются в основном для космических полетов.

.Цикл функционирования подобных установок предусматривает выполнение пяти основных операций:
-  подачу в камеру сгорания компонентов топлива и образование рабочей смеси,
-  срабатывание детонирующего устройства (по аналогии с автомобильной свечой зажигания),
-  распространение ударной волны вдоль камеры сгорания со скоростью несколько тысяч метров в секунду (для обычного ЖРД этот параметр оценивается на два порядка ниже),
-  выброс продуктов горения,
-  восстановление исходного давления в камере сгорания перед подачей компонентов топлива.

Наиболее сложными проблемами эксплуатации таких двигателей является обеспечение именно детонации топлива, а не его скоростного горения. Наибольшую значимость при этом приобретают стехиометрический состав топлива, размер капель компонентов и локальный коэффициент перемешивания.

Основными преимуществами импульсных детонационных двигателей считаются:
-  высокие экономические показатели. Удельный импульс ракетных двигателей на 5-10% выше, чем у криогенных ЖРД; расход топлива у импульсных двигателей с потреблением атмосферного кислорода на 30-50% меньше, чем у ВРД,
-  простота конструкции и, соответственно, высокая надежность. Компоненты топлива подаются в камеру сгорания при низком давлении, что позволяет отказаться от использования турбонасосных агрегатов и усиленных трубопроводов (некоторого упрочнения потребует лишь камера сгорания, поскольку при микровзрыве давление в ней увеличивается в 18-20 раз),
-  низкие затраты на производство. По удельной стоимости единицы тяги импульсные двигатели примерно в четыре раза дешевле обычных ТРД (55 долларов за 1 кг тяги против 220 долл./кг),
- каскадность изменения уровня тяги (практически мгновенные выход на рабочий режим и останов двигателя), широкие возможности по дросселированию тяги.

Ведущие позиции по разработке импульсных детонационных двигателей занимает специализированный центр Seattle Aerosciences Center (SAC), выкупленный в 2001 г. компанией Pratt and Whitney у фирмы Adroit Systems. Большая часть работ центра финансируется ВВС и NASA из бюджета межведомственной программы Integrated High Payoff Rocket Propulsion Technology Program (IHPRPTP), направленной на создание новых технологий для ракетных двигателей различных типов (данная программа является своеобразным аналогом проектов IHPTET и VAATE).

В общей сложности начиная с 1992 г. специалистами центра SAC осуществлено свыше 500 стендовых испытаний экспериментальных образцов двигателей различных типов. В феврале 2000 г. на технической базе Лаборатории AFRL фирма провела серию запусков шестикамерного двигателя PDRE, работающего на газообразном кислороде и водороде. Компоновкой этого двигателя предусмотрено кольцевое расположение камер сгорания, длина которых составляла 90 см, а диаметр 2,5 см.

Предыдущая Оглавление Следующая