При проектировании СНАУ для «Спирали» впервые были сформулированы принципы построения радиотехнической микроволновой системы посадки. В ОКБ Микояна и в Московском институте электромеханики и автоматики были созданы первые полунатурные стенды для отработки СНАУ на дозвуковых участках полета орбитального самолета. Предельные значения разбросов точек вывода к моменту коррекции бортовой СНАУ не превышают 80-100 км. Алгоритм управления в горизонтальной плоскости основан на принципе вывода орбитального самолета в район посадки с вектором скорости, направленным вдоль ВПП, что достигается выбором точек переключения крена, определяемых по текущим параметрам движения для угла крена, заданного контуром управления в вертикальной плоскости.
Для гарантированного вывода самолета на посадочную полосу заданного аэродрома в сложных метеоусловиях предусматривается радиокоррекция фактических координат самолета после выхода его из плазмы на высоте 50-55 км (М=11-12) с помощью бортовой аппаратуры, использующей информацию штатных аэродромных радиомаяков и перспективных (напомним, речь идет о 1966 г.) радиотехнических средств. Это позволяет летчику и автоматической системе управления полностью компенсировать инструментальные ошибки системы навигации до подхода к аэродрому и вывести самолет на направление посадочной полосы с динамическими ошибками не более 4-6 км на дальности 35-40 км от аэродрома и осуществить заход на посадку с работающим ТРД по курсоглиссадной зоне радиомаяка.
Для управления траекторией самолета при спуске помимо основной автоматической системы управления предусматривалась резервная упрощенная ручная система управления по директорным сигналам.
Стыковка ЭПОСА с ракетой-носителем прорабатывалась совместно с ОКБ-1 MOM и его Куйбышевским филиалом. Был произведен расчет динамики вывода самолета на орбиту и определены выводимый вес самолета (6800 кг) и возможная высота орбиты (до 150 км). При этом для уменьшения возмущающих аэродинамических моментов, действующих на ракету, самолет при выводе на орбиту должен был быть оснащен коническим обтекателем, сбрасываемым после отделения первой ступени ракеты. В этом случае никаких существенных доработок по прочности и системе управления ракетой не требуется. Доработке подлежат только стартовые и подъемные устройства с созданием наземных контрольно-проверочных и обслуживающих орбитальный самолет устройств.
В первых полетах ЭПОС должен был проверить принципиальную осуществимость газодинамического маневра по изменению плоскости орбиты. Этот маневр должен был стать штатным элементом программы полета боевых орбитальных самолетов в ударном и разведывательном вариантах для обеспечения возможности повторного прохода над целью. Располагаемое количество топлива для выполнения маневра составляло 2000 кг из-за ограничения веса самолета, выводимого на орбиту. Его хватало на 7 минут работы маршевого ЖРД и поворот плоскости орбиты только на 8 градусов. Тем не менее успех этой операции на ЭПОСе давал бы уверенность в повороте плоскости орбиты на боевых ОС на большие (требуемые) углы.
Первый испытательный орбитальный полет должен был выглядеть следующим образом. Сначала, после проверки бортовых систем ЭПОСА в Монтажно-испытательном корпусе на площадке №2 Байконура, производится заправка ЭПОСА высококипящими компонентами топлива, затем осуществляется стыковка с РН «Союз».
Консоли крыла складываются в стартовое положение («шалашиком на спине»), и после накатки головного обтекателя ракета с космическим аппаратом общей высотой около 37 м (из которых 10 м приходится на находящиеся под обтекателем ЭПОС и силовую ферму крепления к РН) вывозится на старт, где проводятся заключительные операции (комплексные проверки, заправка РН, посадка пилота-космонавта в аппарат, предстартовая готовность и т.д.), знакомые нам по пускам других «Союзов».
Запуск происходит ранним утром (с 6.00 до 9.00 ДМВ) (ДМВ - декретное московское время) в течение двух-трех часового стартового окна для обеспечения посадки на выбранные аэродромы на территории СССР в светлое время суток.
После старта на активном участке полета РН на обтекатель воздействует максимальный скоростной напор 3600 кг/м2, летчик-космонавт испытывает максимальную перегрузку 4,4 g. Ракета выводит ЭПОС весом 7 т на низкую рабочую орбиту высотой 130 км, наклонением 51 градус и периодом обращения около полутора часов. Затем аппарат сбрасывает 200-килограммовую соединительную ферму и начинает получасовые проверки бортовых систем, во время которых наземный ЦУП анализирует поступающую с борта телеметрическую информацию, после чего начинается подготовка маневра по повороту плоскости орбиты — проверяются двигатели ориентации (ГДУ), ЭПОС стабилизируется для выдачи импульса. В начале второго витка, в зоне слежения наземных командных пунктов включается маршевый ЖРД, и через 7 минут, «облегчившись» почти на 2 т, аппарат выходит на новую орбиту наклонением 58 градусов 45 минут. На втором витке продолжаются испытания бортовых систем, т.е. идет выполнение программы полета по «мирному освоению космоса», затем начинается подготовка к посадке.
Консоли крыла занимают положение для входа в атмосферу (угол поперечного V - 60 градусов), ЭПОС ориентируется двигателями вперед, и над Индийским океаном (примерно на расстоянии около 14000 км до аэродрома посадки) включением аварийных ЖРД (с целью их проверки) выдается тормозной импульс для схода с орбиты. Пилот-космонавт производит слив остатков топлива за борт и ориентирует аппарат под требуемым углом атаки для входа в атмосферу со скоростью М=25.
Гиперзвуковое маневрирование в атмосфере при используемом среднем качестве 0,9 (при угле атаки 45 градусов) может обеспечить зону посадок ±1100 км в любую сторону от плоскости орбиты за счет совершения бокового маневра и до 4000 км в плоскости орбиты. (Максимальное аэродинамическое качество, которым обладает ЭПОС на гиперзвуке, равно К=1,5 при скорости М=6. В последующих полетах конструкторы надеялись повысить среднее качество ближе к максимальному значению за счет некоторого снижения угла атаки на гиперзвуковом участке (и соответственно, увеличения температуры нагрева ТЗЭ) для увеличения располагаемой величины бокового маневра до ±1480 км и до 6000 км по дальности в плоскости орбиты).
Прохождение участка максимальных тепловых потоков осуществляется с использованием изменения угла крена в пределах от 0 градусов до 60 градусов, что обеспечивает необходимую продольную и боковую дальность и вывод в заданный район посадки. Маневрирование по крену существенно упрощает схему управления и снижает до минимума затраты топлива на газодинамическое управление при спуске. Максимальные перегрузки, испытываемые летчиком на участке спуска, не превышают -1,4 g по оси X (в направлении «грудь-спина») и +1,4 g по оси Y («голова-ноги»). После снижения скорости до М=10 происходит программное раскладывание консолей до 45 градусов.
Следующая окончательная раскладка консолей в максимальное положение (угол поперечного V - 30 градусов) происходит на скорости М=2,5. На расстоянии 60 км до аэродрома запускается ТРД, развивающий тягу 1000 кгс на скорости М=0,35, и с высоты 2000 м начинается участок планирования, на котором самолет осуществляет предпосадочное маневрирование со скоростью около 400 км/час, снижаясь с вертикальной скоростью 18 м/сек по траектории с углом наклона 12 градусов.