Оглавление

TuHipSon046.jpg

Модель самолета Ту-260

Накопленный опыт показывал, что для летательных аппаратов, подверженных интенсивному аэродинамическому нагреву продолжительное время перспективными представлялись следующие типы конструкций: «горячая», теплоизолированная и активно-охлаждаемая. «Горячая» конструкция непосредственно контактирует с окружающей средой. Теплоизолированная конструкция защищена теплоизлучающим слоем или экраном. Конструкция с активным охлаждением предполагала использование системы циркуляции теплоносителя, отводящего тепло от обшивки. Основными проблемами, требовавшими решения, являлись ослабление температурных напряжений, уменьшение коробления и увеличение ресурса конструкции. Одним из направлений, позволявшим ослабить температурные напряжения, являлось использование теплозащитных панелей (гофрированных, трубчатых и т.п.). Теплоизолированные конструкции предлагалось выполнять как сочетание силовой конструкции и теплозащиты. Самолет с умеренными требованиями к ресурсу и с крейсерским числом полета М=6 мог иметь «горячую» конструкцию или экранированную конструкцию, или упрощенную пассивную систему охлаждения. Для самолетов с большим ресурсом активная система охлаждения представлялась необходимой. В системе должны были использоваться промежуточные теплоноситель (например этиленгликоль), циркулирующий в каналах обшивки, передающий тепло через теплообменник жидкому водороду, который после этого должен был служить охладителем компонентов двигателя и поступать в камеру сгорания. Требования к активной системе могли быть снижены применением теплозащитных экранов или теплоизоляции.

Необходимость использования жидкого водорода в качестве топлива гиперзвукового самолета требует разработки высокоэффективной конструкции баков и низкотемпературной теплоизоляции (НТИ). Несмотря на то, что начиная с 60-х гг. было исследовано как в США, так и в СССР много различных конструкций криогенных баков и НТИ ни одна из этих конструкций не удовлетворяет как техническим, так и экономическим требованиям для гиперзвукового самолета. Так, конструкции криогенных баков и НТИ, разработанные для применения в ракетной технике, имеют ограниченный ресурс. Отсутствие необходимости их многократного использования не требовало подробных исследований срока службы НТИ при длительном влиянии термоциклирования, вибрации, климатических условий, старения материалов с точки зрения деградации их теплофизических и физико-механических характеристик во времени.

Исследования по вопросам создания самолета на криогенном топливе показали, что среди множества технических проблем, одной из наиболее существенных является тепловая защита криогенных топливных баков.

Имевшийся, на тот период, задел в области гиперзвуковой аэродинамики был более весомый, чем в области конструкций и силовых установок будущих гиперзвуковых самолетов. Многие результаты аналитических и экспериментальных исследований, проведенных по другим авиационным, ракетным и авиационно-космическим программам (в частности по МВКА) были во многом применимы к гиперзвуковым самолетам. Предстояло еще много сделать для определения оптимальной аэродинамической схемы, обеспечивающей полезное взаимодействие силовой установки и планера гиперзвукового самолета. Как и для обычных самолетов, необходимо было вести исследования по применению систем активного управления при уменьшении запасов статической устойчивости, что должно было снизить размеры и массу летательного аппарата.

В СССР работы по гиперзвуковым самолетам в ударных вариантах начались в середине 70-х годов. К работам над этой перспективной тематикой было подключено несколько авиационных ОКБ страны и научно-исследовательских организаций авиационной промышленности.

В Туполевском ОКБ работы шли в следующих направлениях:
-  исследования и проектирование гиперзвукового дальнего ударного самолета, рассчитанного на крейсерскую скорость полета, соответствующую М=4 - проект «230» (Ту-230). Проектирование было начато в 1983 г. Эскизный проект был готов в 1985 г. Взлетная масса самолета определялась в пределах 180 т. Силовая установка должна была состоять из четырех комбинированных ТРД типа Д-80. Максимальный запас топлива (керосин) - 106 т. Высота крейсерского полета 25000 - 27000 м, максимальная дальность полета определялась в 8000 - 1 0000 км при продолжительности полета 2,3 часа, (длина самолета - 54,15 м, размах крыла - 26,83 м);
-  исследования и проектирование гиперзвукового дальнего самолета, рассчитанного на крейсерскую скорость полета, соответствующую М=6 - проект «260» (Ту-260). Это был ЛА с двигателями, работающими на крейсерском режиме на жидком водороде с дальностью полета до 12000 км при 10 т полезной нагрузки;
-  исследования и проектирование гиперзвукового межконтинентального самолета, рассчитанного на крейсерскую скорость полета, соответствующую М=6, при заданной максимальной дальности полета до 16000 км и с полезной нагрузкой до 20 т — проект «360» (Ту-360). Высота крейсерского полета 30000 - 33000 м.

TuHipSon047.jpgTuHipSon048.jpg

TuHipSon049.jpgTuHipSon050.jpg

Схема самолета Ту-260

 

Оглавление

Hosted by uCoz