Исследование кавитационного движения ракет.
Обширные экспериментальные работы по взаимодействию каверны со струями поддува провели Ю.Ф. Журавлев и А.А. Болдырев.
С конца 1940-х гг. физические исследования и теоретические оценки особенностей формирования каверн позволили начать попытки создания скоростного объекта, движущегося в режиме развитой кавитации.
Первые самоходные опытные образцы удалось реализовать при более высоком, чем ожидалось, уровне сопротивления. Потребовались тщательные исследования, прежде всего экспериментальные, по обоснованию оптимальной формы корпуса, способов осуществления поддува в каверну, методов обеспечения устойчивости и управляемости.
К 1960 г. концепция суперкавитирующего объекта обрела законченность, что дало возможность поставить вопрос его практической разработки.
Решительный прорыв в практической реализации суперкавитационных режимов движения был сделан после принятия в 1961 г. постановления ЦК КПСС и Совета Министров СССР о разработке соответствующих скоростных объектов, а с 1964 г. решением ВПК при Совете Министров научное руководство программой было возложено на ЦАГИ в лице Г.В. Логвиновича. Постановление имело целый ряд важнейших последствий:
- определился разработчик сверхскоростного объекта — нынешнее ОАО ГНПП «Регион»;
- тематика суперкавитационных течений получила импульс к развитию в целом ряде ведущих НИИ страны, прежде всего в НИИ механики МГУ, ИГ СО АН, ИГ АН УССР и др.;
- появилась возможность резко обновить и расширить экспериментальную базу НАГИ по скоростной гидродинамике.
Существеннейшим элементом развития экспериментальной базы ЦАГИ стало создание инфраструктуры, обеспечивающей разработку, постройку и испытания крупномасштабных самоходных моделей-лабораторий, получивших по калибру корпуса общее название М-205. Модели оснащались двигателем, системой автоматического управления, бортовыми регистраторами. В общей сложности было выполнено около тысячи пусков моделей.
Наряду с исследованиями стационарных или почти стационарных режимов кавитационного обтекания появилась необходимость изучения нестационарных кавитационных течений, возникающих при быстром входе в воду тел различной формы.
Такие режимы движения отличаются особой сложностью, поскольку сопровождаются деформацией свободной поверхности жидкости, быстрым изменением смоченной поверхности тела, развитием нестационарных каверн с участием атмосферного воздуха, реализацией различных типов замыкания каверн. В ЦАГИ были выполнены обширные исследования по определению гидродинамических сил, возникающих в процессе пересечения телами свободной поверхности.
Изучение несимметричного входа в воду тел вращения и поиск путей снижения ударных гидродинамических сил привели к научному открытию, использование которого дает возможность практически полностью устранить нестационарную составляющую сил при погружении тел в жидкость.
Поверхностное смыкание каверн, возникающее при входе тел в воду через свободную поверхность, исследовалось Ю.Ф. Журавлевым, ему удалось разработать соответствующую математическую модель, адекватно описывающую явление.
Изучение последующих стадий проникновения тела в жидкость в режиме развитой кавитации привело к обнаружению возможности достижения телом, имеющим определенную расчетную форму, больших глубин за очень короткое время. Так, при начальной скорости 1200 м/с тело массой 500 кг, движущееся по инерции, может достичь глубины 500 м менее чем за 1 с.
Одним из негативных явлений, сопровождающих вход скоростных объектов в воду, является возможность рикошета. Особенно вероятны рикошеты при входе в воду под малым углом к горизонту. Это явление было подробно изучено в работах В.В. Стрекалова. Им была предложена классификация возможных вариантов рикошетов. Для устранения возможности рикошетов в ЦАГИ были разработаны обводы кавитаторов и специальных носовых насадков более чем двадцати вариантов.
Исследование входа в воду кавитирующей ракеты.