Системы подрессоривания должны отвечать следующим основным требованиям:
- обеспечивать хорошую плавность хода в различных дорожно-грунтовых условиях;
- обладать высокой живучестью и надежностью в различных условиях боевого применения и эксплуатации;
- иметь относительную массу не более 4—7% от массы машины и занимать не более 6—8% ее внутреннего объема;
- быть удобными для обслуживания и ремонта, просто и легко монтироваться и демонтироваться.
Высокая плавность хода
Во время движения танк подвергается различным внешним воздействиям, которые стремятся вывести его из состояния равновесия, в результате чего он совершает вынужденные колебательные движения, как вертикальные, так и угловые продольные и поперечные. Наиболее вредными являются продольные угловые колебания, так как в этом случае вертикальные ускорения и амплитуда колебаний в носу машины (на месте механика-водителя) имеют наибольшие значения по сравнению с другими видами колебаний и в этом случае наиболее вероятны пробои крайних узлов подвески (т.е. жесткие удары балансиров в ограничители хода катков).
Исследованиями установлено, что организм человека способен безболезненно переносить кратковременные перегрузки в 3—3,5g при частоте возмущения до 2 Гц (т.е. с периодом колебаний Т больше 0,5 с). При возникновении пробоев подвески вертикальные ускорения, как правило, превышают эти значения и могут достигать 10g и более, при которых в организме человека возникают болевые ощущения, часто приводящие к травмам. О вредном влиянии жестких условий колебаний машины говорит тот факт, что у водителей грузовых автомобилей, находящихся в средних дорожных условиях, пояснично-седалищные боли (в основном ишиас) встречаются в три раза чаще, а у работающих в плохих дорожных условиях — в пять раз чаще, чем у водителей легковых автомобилей. Неудивительно, что радикулит считается профессиональной болезнью танкистов, работающих в более жестких условиях по сравнению с водителями автомобилей.
Таким образом, одно из основных требований к системам подрессоривания состоит в том, что на высоких скоростях при движении по длинным неровностям a = 2L (L—длина опорной поверхности гусеницы) и высотой h = 0,15 м должно обеспечиваться движение без пробоя подвески и с вертикальными ускорениями до 3,5g .
При движении по мерзлой пахоте поперек борозд, по замерзшим кочкам, брусчатке и т.д. передаются высокочастотные непрерывно действующие возмущения (ускорения тряски). Длина таких неровностей принимается примерно равной расстоянию между ближайшими опорными катками, а высота h = 0,05 м. При частотах 2—25 Гц организм человека способен на пороге появления «довольно неприятных ощущений» переносить вертикальные ускорения порядка 0,5g . Поэтому система подрессоривания должна быть спроектирована так, чтобы ускорения тряски не превышали эту величину.
Как известно, ускорение находится в прямой зависимости от амплитуды колебаний и в обратной зависимости от квадрата периода. Из этого следует, что наиболее плавный ход обеспечивается подвесками с колебаниями меньшей амплитуды и большего периода Т .
С другой стороны, при значительном периоде колебаний у экипажа возникают неприятные ощущения, связанные с «морской болезнью», что объясняется непривычными для человека частотами колебаний: организм человека наиболее приспособлен к колебаниям с частотой, близкой к частоте ходьбы (примерно 1—2 Гц или период 0,5—1 с, а по данным западных специалистов — 0,7—0,8 Гц). По некоторым источникам, для исключения влияния этого явления Г должен быть не более 1,55 с, по другим — 1,25 с (частота 0,8 Гц).
Кроме влияния на эргономические показатели машины ее колебания ухудшают и условия стрельбы. При отсутствии стабилизатора вооружения значительно ухудшаются условия наблюдения и прицеливания, особенно через приборы с многократным увеличением. В этом случае, если наводчик и смог поймать цель в перекрестие прицела, то из-за запаздывания выстрела пушка все равно уйдет с линии прицеливания, кроме того, снаряд еще дальше отклонится от цели благодаря сложению скоростей полета снаряда и движения пушки в сторону от линии прицеливания в момент начала выстрела. В этих условиях чем меньше угловая скорость и амплитуда колебаний, тем лучше.
Введение стабилизатора танкового вооружения значительно упростило наведение и многократно повысило точность стрельбы с ходу. Однако исполнительные механизмы стабилизаторов вооружения обладают определенной инерционностью и при высоких частотах колебаний не могут достаточно точно удерживать вооружение в заданном положении. Для современных танков удовлетворительная точность стрельбы на европейском ТВД обеспечивается при движении на поле боя со скоростью до 20—30 км/ч.
Обобщив вышесказанное, выделим следующие требования к системам подрессоривания по обеспечению высокой плавности хода:
- исключение пробоев подвески;
- максимальные ускорения при наезде на длинные неровности (a=2L, h=0,15 м) не должны превышать 3,5g
;
- максимальные ускорения тряски при движении по коротким неровностям с высотой h=0,05 м до 0,5g
;
- значение периода собственных угловых колебаний Tφ должно быть больше 0,5 с по эргономическим показателям и больше 1 с по условию обеспечения прицельной стрельбы. В конечном счете желательно
Tφ иметь примерно равным 1,25 с, но не более 1,55 с;
- минимальные амплитуды колебаний корпуса, исключающие пробои на крайних узлах подвески и удары стабилизированного основного вооружения в ограничители углов наведения.
Выполнение вышеперечисленных требований возможно следующими техническими мероприятиями.
Во всех случаях желательно получить определенные качества:
- высокую удельную потенциальную энергию подвески
l
> 0,4—0,5 м (см. ниже раздел «Высокая живучесть подвески»), что достигается большими динамическими ходами катков и использованием мощных амортизаторов;
- большой момент инерции танка, что увеличивает период колебаний и уменьшает реакцию корпуса на внешние возмущающие воздействия, а как результат — и амплитуду его колебаний. Высокий момент инерции достигается благодаря перераспределению масс и установке наиболее тяжелых агрегатов и узлов в носу и корме машины.
Исключения пробоев подвески можно добиться путем увеличения динамических и полных ходов катков. Увеличение динамического хода до 350— 400 мм можно считать разумным пределом, дальнейший рост динамического хода ведет к увеличению высоты корпуса, что приведет при ограниченной массе к ослаблению бронирования.
Можно увеличить жесткость рессор, что повышает удельную потенциальную энергию подвески l, однако этот метод крайне нежелателен, так как часто приводит к прямо противоположному результату. В самом деле, при увеличении жесткости подвески возрастают возмущения, действующие через нее от неровностей местности на корпус, что способствует увеличению амплитуды колебаний и более частым пробоям по сравнению с более мягкой подвеской.
Минимизация вертикальных ускорений достигается применением мягкой подвески с низким приведенным к катку коэффициентом жесткости подвески с. Благодаря этому уменьшаются силы, действующие со стороны опорного катка на корпус при наезде на единичную неровность.