Предыдущая Оглавление Следующая

Другой показатель защищенности — как в конкретном танке располагается боекомплект. Бывалый танкист-фронтовик еще в 1958 г. сказал нам: «А вот и перспективное молодое поколение, а нам пора на пенсию, к тому же, мы уже на 95% решили, как бороться с танками вероятных противников: в каждом из них достаточно боезапаса, чтобы от танка ничего не осталось. Вам остается решить, как его (боезапас) взорвать». Размещение боекомплекта в танке — далеко не последний вопрос. Появившиеся уже тогда опытные образцы харьковского «объекта 430» с кабинным типом размещения выстрелов вызывали недоумение. Вероятно, что и возникшая приверженность к размещению на танках боекомплекта в специальном «замане» тыльной части башни рано или поздно кому-то дорого аукнется.

Другие показатели танка как цели менее очевидны и потребовали привлечения различных средств измерения, в связи с чем начались (зачастую в рамках поставленных ОКР) масштабные научно-исследовательские и экспериментальные работы во всем диапазоне электромагнитных волн.

Однако, в отличие от, например, воздушных целей, существующий контраст танка в условиях боевых действий на местности (дым, пыль, естественные складки местности, кусты, овраги, элементы инженерного оборудования, воронки, подбитая и горящая техника и т.п.) не давал уверенного основания для построения полностью автоматических систем, особенно для стрельбы на большие дальности. Мы только на параде или показе можем видеть танк во всей его заводской «красе». В реальных условиях, заляпанный грязью или покрытый снежно-ледяным панцирем, окутанный пылевым (снежным) облаком при движении, частично перекрытый складками местности и растительным покровом, танк не позволял устойчиво себя сопровождать техническими средствами и не представил тогда какую-либо зацепку для построения полностью автоматических систем наведения. Радиолокационные системы в диапазоне сантиметровых и миллиметровых волн как более устойчивые к перечисленным факторам показали свою несостоятельность с точки зрения возможности использования из-за недостаточной точности определения угловых координат цели и ракеты вследствие ограничения допустимых размеров антенн, низких силуэтов целей, влияния подстилающего покрова местности, особенно в вертикальной плоскости.

Дальний инфракрасный диапазон (около 10 мкм) в этот период отечественной промышленностью в интересах Сухопутных войск был практически не освоен, и проведенные в Кубинке исследования ни к чему не привели. Хотя и здесь таились определенные подводные камни: выравнивание температур излучения на поверхностных слоях цели в лобовой ее части при движении и доступная возможность маскировки мало теплоизлучающими материалами типа пенопластов или банальной пены. Единственный демаскирующий элемент при этом — нагретый от стрельбы ствол пушки, температура которого в сотни раз превышала показатели чувствительности тепловизоров.

Таким образом, в те времена не было найдено надежных средств слежения за целью на больших дальностях, поэтому исключить наводчика полностью из схем построения систем борьбы с танками не удавалось. Оставалось одно — обратиться к возможностям человека.

Вернемся теперь к вопросу предпочтительности выбираемых траекторий независимо от того, какой системой наведения они будут реализовываться (рис.1, а, б, в).

RPzOl002.jpg

Рис. 1

На мой взгляд, предпочтение имели ОКР, предусматривающие траекторное решение, обеспечивающее поражение танка сверху. Таких работ было две. Обе по разным неизвестным мне причинам оказались закрытыми. В одной из них ракета выводилась на определенную высоту, а дальше по радиусу, отслеживающему расстояние до цели, атаковала танк сверху (рис. 1, а). Другая тема предполагала пролет ракеты по траектории на 4—6 м над местностью с обеспечением дистанционного подрыва двух (для компенсации промаха по дальности) кумулятивных боевых частей, установленных перпендикулярно вниз к направлению полета (рис. 1,6). Первая система имела неудовлетворительную «мертвую» зону, низкую скорость ракеты, возможные сложности в реализации вертикальных перегрузок. Вторая, по всей вероятности, незаслуженно недооценена и забыта.

Для остальных систем приняли наиболее трудную для исполнения так называемую «трехточечную»* схему наведения (рис. 1, в), где целью являются фронтальные проекции танка (проекции на вертикальную плоскость). На такой схеме основывалось большинство заданных систем («Шмель», «Фаланга», «Овод», «Лотос». «Дракон», «Тайфун», «Рубин», «Кобра» и др.). Они предполагали контактное использование кумулятивной боевой части (БЧ).

Эта схема требует повышенных требований к точности, особенно в вертикальной плоскости из-за возможных потерь ракеты при задевании земли, и предполагает, как правило, борьбу с наиболее защищенной лобовой проекцией цели. Немаловажным фактором для такой траектории явились последствия стартового задымления, и особенно работы маршевого двигателя при отсутствии боковой составляющей ветра, из-за образования дымовой трубы по траектории длиной до 3000-4000 м при стрельбе на максимальные дальности. Тут и самый «бездымный» порох не поможет — цель исчезает на глазах.

Последняя трудность преодолевалось совершенствованием порохов и специальной техникой стрельбы.

Кое-что о ПТУР

Основой построения систем управляемого наведения является сам управляемый объект, т.е. ракета как носитель боевой части с одной стороны и как объект управления — с другой. Поскольку для комплексов, размещаемых на подвижной базе, отсутствует жесткое ограничение по массе ПТУР, то используемая в то время кумулятивная боевая часть строилась из условия пробития максимально возможной лобовой брони танка с учетом необходимого заброневого действия. Определяющим в этом являлся диаметр БЧ и ее масса. Исключением являлась БЧ для «Кобры», для которой диаметр ограничивался калибром танкового снаряда.


* Траектория ракеты прямая, соединяющая выходное окно прицела наводчика с центром цели.

Предыдущая Оглавление Следующая