Однако выполнять комплекс Д-4 на базе Р-11ФМ и Р-13, учитывая их малые дальности полета, не имело смысла. Поэтому В.П. Макееву и его коллегам пришлось практически заново разработать проектную документацию Р-21 для комплекса Д-4, из-за того что технологические возможности златоустовского завода №66 существенно отличались от днепропетровского производства.
Одноступенчатая баллистическая ракета Р-21 с отделяющейся головной частью была выполнена в виде цельносварной конструкции и состояла из последовательно расположенных приборного отсека, бака окислителя, бака горючего и хвостового отсека со стабилизаторами. Четыре стабилизатора, расположенные в хвостовой части, служили для повышения статической устойчивости ракеты в полете. Баки окислителя и горючего являлись силовыми элементами корпуса ракеты. Они разделялись межбаковым пространством, которое сообщалось с хвостовым отсеком через кольцевой зазор между тоннельной (в баке горючего) и расходной (из бака окислителя) трубами. Взамен алюминиевых сплавов применили сталь ЭИ-811, большинство соединений выполнили сварными для обеспечения столь необходимой под водой герметичности. Уральские конструкторы продемонстрировали высокий уровень проектирования: ракета стала компактнее (диаметр уменьшился с 1,4 до 1,3 м, длина сократилась на 0,18 м) и легче на 260 кг по сравнению с показателями, заявленными в проекте ОКБ-586.
В баках окислителя (азотная кислота) и горючего («тонка» — ТГ-02) при предстартовых операциях создавалось необходимое противодавление внешней среде с помощью системы предварительного и предстартового наддува. Разгрузка конструкции от сжатия внешним давлением воды при старте с глубины до 50 м достигалась наддувом баков. Снижение нагрузок на ракету обеспечивалось оригинальным способом. Запуск двигателя должен был осуществляться не непосредственно в воду, заполнившую шахту, а в «воздушный колокол», образуемый герметизированными объемами хвостового отсека ракеты и специальным поддоном пускового стола. В эту полость хвостового отсека ракеты сжатый воздух номинального давления 12,5 кг/см2 подавался от корабельных систем перед стартом. Система наддува «колокола» работала в автоматическом режиме, управляемая датчиками поплавкового типа.
Уменьшение пика давления в шахте до допускаемых прочностью стенок шахты значений и снижение влияния внешних нагрузок на ракету при старте из глухой шахты без специальных газоотводов и движении ракеты под водой обеспечивались специальной программой ступенчатого выхода двигателя на режим, предстартовым наддувом баков ракеты, созданием прочных и герметичных головного и приборного отсеков. Сжатый воздух из «колокола» через кольцевой зазор между тоннельной и расходной трубами поступал в межбаковый отсек, обеспечивая разгрузку от сжатия давлением воды. Направляющие под бугели ракеты крепились к стенкам шахты пружинными амортизаторами, снижавшими перегрузки ракеты при взрывах глубинных бомб. На начальном воздушном участке траектории бугели отстреливались через 15 с после отрыва ракеты от пускового стола.
По мнению главного конструктора В.П. Макеева, старт на маршевом двигателе не требовал создания специальных корабельных устройств, необходимых для обеспечения выхода ракеты из шахты и из воды, и обеспечивал возможность управляемого движения ракеты на подводном участке траектории.
Смена разработчика ЖРД сказалась и на конструкции двигателя. Специалистами ОКБ-2 под руководством A.M. Исаева (ведущий конструктор П.С. Байковский) был создан компактный по объему и малый по длине четырехкамерный ЖРД с центрально расположенным турбонасосным агрегатом (ТНА). A.M. Исаев отмечал: «Этот двигатель по сравнению с предыдущим двигателем имеет один и тот же мидель, более чем в полтора раза большую тягу и более чем в полтора раза меньшую длину».
Двигатель был выполнен по открытой схеме с автоматическим регулированием тяги и соотношения расходов компонентов топлива. В сравнении с ЖРД ракеты Р-13 его тяга возросла на 50%. Камеры двигателя стали управляющими органами ракеты и имели поворотные углы подвески с углом прокачки ±9°. Оси качания камер были параллельно смещены относительно плоскостей стабилизации на угол 60° для обеспечения рационального соотношения между управляющими моментами по тангажу, рысканию и вращению.
Особое внимание уделялось наземной экспериментальной отработке ЖРД. Так, было проведено несколько десятков огневых стендовых испытаний, в том числе с имитацией действия противодавления в момент запуска двигателя в шахте подводной лодки с помощью специальных заглушек, устанавливаемых в сопла камер сгорания.
Конструктивное исполнение двигателя, не требующее проведения каких-либо проверок и настроек в процессе эксплуатации, герметичность от внешнего давления и широкий диапазон регулирования обеспечивали надежный запуск двигателя под водой и автоматическое поддержание режимов как на подводном, так и на надводном участках траектории. Конструкция ЖРД предусматривала его останов при аварийном выключении с герметичным разобщением топливных магистралей.
Тяга двигателя у земли составляла 40 тс при давлении в камерах сгорания 66,4 кг/см2, удельная тяга у земли достигала 241,4 тс. Предусматривалось аварийное выключение двигателя, при этом его топливные магистрали герметично разобщались. Минимально потребное давление в баках окислителя и горючего для обеспечения безкавитационного режима работы двигателя составляло 3,5 и 1,7 кг/см2 соответственно. В полете наддув баков ракеты осуществлялся газами, вырабатываемыми газогенератором ТНА и специальным газогенератором наддува.
Головная часть (ГЧ) ракеты (массой 1179 кг), оснащенная спецбоеприпасом, имела форму притуплённого по сфере конуса. Корпус ГЧ и заряд не совмещенные. Отделение заряда от жесткой связи с корпусом ГЧ осуществлялось при срабатывании по команде от бортовой системы управления четырех пирозамков. За счет использования достаточно мощного ЖРД удалось значительно увеличить заданную дальность (максимальная дальность полета составляла 1450 км).