Предполагается применение на новом самолете «умной» обшивки планера с «вживленными» датчиками, представляющей собою, фактически, один сплошной датчик. Это позволит отказаться от установки БРЛС в современном понимании этого термина. В обшивку также будут встроены антенны и излучатели для кибернетических атак. Применение такой обшивки позволит получать исчерпывающую информацию о боевой и тактической обстановке, рельефе подстилающей местности, с высокой надежностью опознавать цели и определять, какую меру ущерба им необходимо нанести (временно ослепить, вывести из строя или уничтожить). Применение «умной» обшивки, с другой стороны, приведет к трудностям эксплуатационного характера, т. к. при выходе из строя одного или нескольких датчиков на определенной панели обшивки придется менять всю панель.
Быстрое совершенствование технологий искусственного интеллекта, возможно, позволит создать через 20 лет полностью автономный беспилотный боевой самолет, имеющий возможность самостоятельно менять программу боевого вылета, обнаруживать, опознавать цели и принимать решение об их атаке.
Вероятно также использование ЛА в режиме дистанционного пилотирования. Летчик или оператор будет пребывать в полностью виртуальном, высоко детализированном мире, синтезированном посредством бортовых датчиков ЛА и других участников боевой сети. Возможно, электрическая проводка уступит место оптоволоконной, что позволит передавать гораздо большее количество информации по одиночному кабелю и значительно упростить интеграцию бортового комплекса. Оптическая проводка также значительно менее подвержена действию систем вражеской РЭБ, устойчива к попыткам снятия информации посторонним источником и к кибератакам.
Возможно создание одной универсальной многоцелевой платформы, либо семейства специализированных платформ различного целевого назначения, действующих в «команде», как, например, одного пилотируемого самолета и одного или нескольких беспилотных «лояльных ведомых», которые подчиняются вербальным командам летчика-оператора, делятся с ним информацией, получаемой своими датчиками, и несут дополнительный запас оружия.
Наибольший скепсис вызывает возможность выхода истребителя шестого поколения на гиперзвук, т. к. для этого требуется слишком специфическая силовая установка переменного цикла, разработка которой еще даже не начиналась, и радикальное изменение аэродинамики планера, а также применение мощной термической защиты. Кроме того, все датчики ЛА на гиперзвуке будут «ослепляться» облаком плазмы, образующимся вокруг него. Тем не менее, гиперзвуковую скорость полета нельзя сбрасывать со счетов, т. к., одним из ключевых требований к ЛА шестого поколения будет быстрота реакции на возникающую угрозу.
Возможно, будет принято компромиссное решение о применении с борта ЛА гиперзвуковых боеприпасов для кинетического воздействия на цель и тактической разведки. Цель должна находиться под постоянным наблюдением, для чего в помощь платформе могут применяться разведывательные БПЛА и наземные датчики слежения.
При этом самолет должен быть относительно недорогим, простым в эксплуатации и обслуживании, легко поддаваться модернизации. Необходимо избежать неконтролируемого роста стоимости программы, с тем, чтобы принять самолет на вооружение в количествах, необходимых для ведения полноценной войны с многочисленным противником. Недопустимо повторение ошибок, сделанных в ходе реализации программ самолетов В-2 и F-22, которые, с одной стороны, являлись этапными и прорывными в области технологий, но с другой, были обречены стать «белыми слонами» из-за своей непомерной стоимости.
Уже сегодня представителям авиапрома США требуется четкий сигнал из МО о готовности финансировать работы по шестому поколению, с тем, чтобы начать вкладывать собственные средства в развитие и совершенствование новых технологий, необходимых для его реализации. Если же этого не произойдет, то, скорее всего, развитие авиационных технологий в США затормозится, и авиационная промышленность окажется не готова к столь масштабной разработке.
Как показывает практика, большинство современных программ разработки военной техники имеют шанс на успех и внедрение в серию лишь в случае достижения ими 6-го или выше уровня технологического соответствия (см. ниже). Исключение составили как раз программы В-2 и F-22, уровень технологического соответствия которых был 4. В результате, затраты на НИОКР возросли по сравнению с прогнозом в несколько раз. В этом отношении истребитель 6 поколения будет являться огромным стимулом для развития промышленности, технологий и инженерной мысли. Самоуспокоенность ведет к стагнации и умиранию промышленности и научной базы.
Уровни технологии соответствия, принятые в США:
1-й уровень: уяснение основных принципов работы. Переход от чистого теоретизирования к практическим исследованиям. Уяснение основных свойств технологии.
2-й уровень: творческий процесс научного исследования, создание натурных образцов при отсутствии доказательств действительной ценности технологии и детального анализа свойств.
3-й уровень: ведение активных НИОКР, аналитических и лабораторных исследований для подтверждения прогнозов. Компоненты технологии еще не составляют единого целого.
4-й уровень: соединение компонентов в единое целое, получение стендовых (лабораторных) доказательств работоспособности технологии.
5-й уровень: уверенная демонстрация работоспособности технологии в реальных условиях или при их имитации.
6-й уровень: создание прототипа - демонстратора технологии. Проведение испытаний. Этот уровень является критическим.
7-й уровень: прототип системы успешно демонстрирует свою работоспособность в реальных условиях или при их имитации (например, на ЛЛ в полете).
8-й уровень: демонстрация предсерийного образца. Обычно достижение этого уровня означает конец НИОКР.
9-й уровень: принятие на вооружение, боевое использование в реальных условиях.